An Application of the EM-algorithm to Approximate Empirical Distributions of Financial Indices with the Gaussian Mixtures

نویسنده

  • Sergey Tarasenko
چکیده

In this study I briefly illustrate application of the Gaussian mixtures to approximate empirical distributions of financial indices (DAX, Dow Jones, Nikkei, RTSI, S&P 500). The resulting distributions illustrate very high quality of approximation as evaluated by Kolmogorov-Smirnov test. This implies further study of application of the Gaussian mixtures to approximate empirical distributions of financial indices. Keywords—financial indices, Gaussian distribution, mixtures of Gaussian distributions, Gaussian mixtures, EM-algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EMPIRICAL BAYES ANALYSIS OF TWO-FACTOR EXPERIMENTS UNDER INVERSE GAUSSIAN MODEL

A two-factor experiment with interaction between factors wherein observations follow an Inverse Gaussian model is considered. Analysis of the experiment is approached via an empirical Bayes procedure. The conjugate family of prior distributions is considered. Bayes and empirical Bayes estimators are derived. Application of the procedure is illustrated on a data set, which has previously been an...

متن کامل

Tests of Fit for Normal Variance Inverse Gaussian Distributions

Goodness–of–fit tests for the family of symmetric normal variance inverse Gaussian distributions are constructed. The tests are based on a weighted integral incorporating the empirical characteristic function of suitably standardized data. An EM– type algorithm is employed for the estimation of the parameters involved in the test statistic. Monte Carlo results show that the new procedure is com...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.01033  شماره 

صفحات  -

تاریخ انتشار 2016